Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 5.095
Filter
1.
Biochem Genet ; 2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38656671

ABSTRACT

Elderly patients infected with severe acute respiratory syndrome coronavirus 2 are at higher risk of severe clinical manifestation, extended hospitalization, and increased mortality. Those patients are more likely to experience persistent symptoms and exacerbate the condition of basic diseases with long COVID-19 syndrome. However, the molecular mechanisms underlying severe COVID-19 in the elderly patients remain unclear. Our study aims to investigate the function of the interaction between disease-characteristic genes and immune cell infiltration in patients with severe COVID-19 infection. COVID-19 datasets (GSE164805 and GSE180594) and aging dataset (GSE69832) were obtained from the Gene Expression Omnibus database. The combined different expression genes (DEGs) were subjected to Gene Ontology (GO) functional enrichment analysis, Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway and Diseases Ontology functional enrichment analysis, Gene Set Enrichment Analysis, machine learning, and immune cell infiltration analysis. GO and KEGG enrichment analyses revealed that the eight DEGs (IL23A, PTGER4, PLCB1, IL1B, CXCR1, C1QB, MX2, ALOX12) were mainly involved in inflammatory mediator regulation of TRP channels, coronavirus disease-COVID-19, and cytokine activity signaling pathways. Three-degree algorithm (LASSO, SVM-RFE, KNN) and correlation analysis showed that the five DEGs up-regulated the immune cells of macrophages M0/M1, memory B cells, gamma delta T cell, dendritic cell resting, and master cell resisting. Our study identified five hallmark genes that can serve as disease-characteristic genes and target immune cells infiltrated in severe COVID-19 patients among the elderly population, which may contribute to the study of pathogenesis and the evaluation of diagnosis and prognosis in aging patients infected with severe COVID-19.

2.
Article in English | MEDLINE | ID: mdl-38662912

ABSTRACT

The conventional von Neumann architecture has proven to be inadequate in keeping up with the rapid progress in artificial intelligence. Memristors have become the favored devices for simulating synaptic behavior and enabling neuromorphic computations to address challenges. An artificial synapse utilizing the perovskite structure PbHfO3 (PHO) has been created to tackle these concerns. By employing the sol-gel technique, a ferroelectric film composed of Au/PHO/FTO was created on FTO/glass for the purpose of this endeavor. The artificial synapse is composed of Au/PHO/FTO and exhibits learning and memory characteristics that are similar to those observed in biological neurons. The recognition accuracy for both MNIST and Fashion-MNIST data sets saw an increase, reaching 92.93% and 76.75%, respectively. This enhancement resulted from employing a convolutional neural network architecture and implementing an improved stochastic adaptive algorithm. The presented findings showcase a viable approach to achieve neuromorphic computation by employing artificial synapses fabricated with PHO.

3.
Int J Biol Macromol ; : 131503, 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38663697

ABSTRACT

Herbivorous insects utilize intricate olfactory mechanisms to locate food plants. The chemical communication of insect-plant in primitive lineage offers insights into evolutionary milestones of divergent olfactory modalities. Here, we focus on a system endemic to the Qinghai-Tibetan Plateau to unravel the chemical and molecular basis of food preference in ancestral Lepidoptera. We conducted volatile profiling, neural electrophysiology, and chemotaxis assays with a panel of host plant organs to identify attractants for Himalaya ghost moth Thitarodes xiaojinensis larvae, the primitive host of medicinal Ophiocordyceps sinensis fungus. Using a DREAM approach based on odorant induced transcriptomes and subsequent deorphanization tests, we elucidated the odorant receptors responsible for coding bioactive volatiles. Contrary to allocation signals in most plant-feeding insects, T. xiaojinensis larvae utilize tricosane from the bulbil as the main attractant for locating native host plant. We deorphanized a TxiaOR17b, an indispensable odorant receptor resulting from tandem duplication of OR17, for transducing olfactory signals in response to tricosane. The discovery of this ligand-receptor pair suggests a survival strategy based on food location via olfaction in ancestral Lepidoptera, which synchronizes both plant asexual reproduction and peak hatch periods of insect larvae.

4.
Food Chem X ; 22: 101381, 2024 Jun 30.
Article in English | MEDLINE | ID: mdl-38665635

ABSTRACT

Microwave technology offers a rapid and uniform heating method. This study investigated how microwave pretreatment affects the aroma precursors and flavor of fragrant rapeseed oils (FROs). Microwave pretreatment led to decreased levels of polyunsaturated fatty acids, sugars, protein-bound amino acids, and glucosinolates. Using gas chromatography-mass spectrometry, we identified 66 volatile compounds in the oil samples. Among these, based on odor activity values (OAV ≥ 1), we found 9 aldehydes, 1 ketone, 6 pyrazines, 1 isothiocyanate, and 7 nitriles as the key aroma-active compounds, contributing fatty-like, nutty-like, and pungent-like odors, respectively. The electronic nose results highlighted W5S and W1W as primary sensors for determining the flavor profiles of FROs. Notably, aroma-active pyrazines exhibited strong negative correlations with sucrose, cysteine, lysine, and isoleucine. This research provides essential insights for enhancing the aroma of FROs.

5.
Comput Struct Biotechnol J ; 23: 1469-1476, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38623560

ABSTRACT

RNA plays an extensive role in a multi-dimensional regulatory system, and its biomedical relationships are scattered across numerous biological studies. However, text mining works dedicated to the extraction of RNA biomedical relations remain limited. In this study, we established a comprehensive and reliable corpus of RNA biomedical relations, recruiting over 30,000 sentences manually curated from more than 15,000 biomedical literature. We also updated RIscoper 2.0, a BERT-based deep learning tool to extract RNA biomedical relation sentences from literature. Benefiting from approximately 100,000 annotated named entities, we integrated the text classification and named entity recognition tasks in this tool. Additionally, RIscoper 2.0 outperformed the original tool in both tasks and can discover new RNA biomedical relations. Additionally, we provided a user-friendly online search tool that enables rapid scanning of RNA biomedical relationships using local and online resources. Both the online tools and data resources of RIscoper 2.0 are available at http://www.rnainter.org/riscoper.

6.
Genome Biol ; 25(1): 102, 2024 Apr 19.
Article in English | MEDLINE | ID: mdl-38641822

ABSTRACT

BACKGROUND: Splicing factors are vital for the regulation of RNA splicing, but some have also been implicated in regulating transcription. The underlying molecular mechanisms of their involvement in transcriptional processes remain poorly understood. RESULTS: Here, we describe a direct role of splicing factor RBM22 in coordinating multiple steps of RNA Polymerase II (RNAPII) transcription in human cells. The RBM22 protein widely occupies the RNAPII-transcribed gene locus in the nucleus. Loss of RBM22 promotes RNAPII pause release, reduces elongation velocity, and provokes transcriptional readthrough genome-wide, coupled with production of transcripts containing sequences from downstream of the gene. RBM22 preferentially binds to the hyperphosphorylated, transcriptionally engaged RNAPII and coordinates its dynamics by regulating the homeostasis of the 7SK-P-TEFb complex and the association between RNAPII and SPT5 at the chromatin level. CONCLUSIONS: Our results uncover the multifaceted role of RBM22 in orchestrating the transcriptional program of RNAPII and provide evidence implicating a splicing factor in both RNAPII elongation kinetics and termination control.


Subject(s)
Positive Transcriptional Elongation Factor B , RNA Polymerase II , Humans , RNA Polymerase II/metabolism , Positive Transcriptional Elongation Factor B/genetics , Positive Transcriptional Elongation Factor B/metabolism , RNA Splicing , Chromatin , RNA Splicing Factors/genetics , Transcription, Genetic , Transcriptional Elongation Factors/genetics , Transcriptional Elongation Factors/metabolism
7.
Mol Nutr Food Res ; 68(8): e2300720, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38581348

ABSTRACT

SCOPE: The global prevalence of obesity has significantly increased, presenting a major health challenge. High-fat diet (HFD)-induced obesity is closely related to the disease severity of psoriasis, but the mechanism is not fully understood. METHODS AND RESULTS: The study utilizes the HFD-induced obesity model along with an imiquimod (IMQ)-induced psoriasis-like mouse model (HFD-IMQ) to conduct transcriptomics and metabolomic analyses. HFD-induced obese mice exhibits more severe psoriasis-like lesions compared to normal diet (ND)-IMQ mice. The expression of genes of the IL-17 signaling pathway (IL-17A, IL-17F, S100A9, CCL20, CXCL1) is significantly upregulated, leading to an accumulation of T cells and neutrophils in the skin. Moreover, the study finds that there is an inhibition of the branched-chain amino acids (BCAAs) catabolism pathway, and the key gene branched-chain amino transferase 2 (Bcat2) is significantly downregulated, and the levels of leucine, isoleucine, and valine are elevated in the HFD-IMQ mice. Furthermore, the study finds that the peroxisome proliferator-activated receptor gamma (PPAR γ) is inhibited, while STAT3 activity is promoted in HFD-IMQ mice. CONCLUSION: HFD-induced obesity significantly amplifies IL-17 signaling and exacerbates psoriasis, with a potential role played by Bcat2-mediated BCAAs metabolism. The study suggests that BCAA catabolism and PPAR γ-STAT3 exacerbate inflammation in psoriasis with obesity.


Subject(s)
Amino Acids, Branched-Chain , Diet, High-Fat , Imiquimod , Inflammation , Mice, Inbred C57BL , Obesity , Psoriasis , Animals , Psoriasis/metabolism , Amino Acids, Branched-Chain/metabolism , Obesity/metabolism , Obesity/complications , Diet, High-Fat/adverse effects , Male , Inflammation/metabolism , STAT3 Transcription Factor/metabolism , STAT3 Transcription Factor/genetics , Interleukin-17/metabolism , Interleukin-17/genetics , Mice , PPAR gamma/metabolism , PPAR gamma/genetics , Disease Models, Animal , Mice, Obese , Signal Transduction , Transaminases/metabolism , Skin/metabolism
8.
J Chromatogr A ; 1722: 464889, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38598894

ABSTRACT

In this paper, three imidazole- and C18- bifunctional silica stationary phases (Sil-Im-C18) were prepared by adjusting introduction interval of octadecyltrichlorosilane (ODS) and 3-imidazol-1-ylpropyl(trimethoxy)silane (TMPImS), which can be used for reversed-phase liquid chromatography (RPLC) and ion exchange chromatography (IEC) with adjustable performance. The successful preparation of Sil-Im-C18 were confirmed by the characterizations of elemental analysis, infrared spectroscopy (FTIR) and contact angle (CA). Chromatographic performance of Sil-Im-C18 were evaluated by the separation of Tanaka test mixture, alkylbenzenes, linear PAHs and a set of analytes with different properties (uracil, phenol, 1,2-dinitrobenzene and naphthalene), and compared with commonly used C18 column. It was found that the chromatographic performance of Sil-Im-C18 changed significantly with the difference in bonding amount of imidazole and C18. Sil-Im-C18 demonstrated the excellent separation performance towards polycyclic aromatic hydrocarbons (PAHs), phenylesters, phenylamines, phenols and inorganic anions, and notably, nucleobases and nucleosides can be separated using pure water as mobile phases. The van Deemter plot showed that the column efficiency of Sil-Im-C18-3 was 64,933 plate·m-1 for naphthalene, indicated that Sil-Im-C18 was reasonably chromatographic columns. The RSD values of retention time were 0.22 %-0.61 % for 10 needles alkylbenzenes injected continuously at 50 °C to investigate thermal stability and repeatability, all the fluctuations of k of naphthalene were less than 2.3 % for Sil-Im-C18-1 during flushing 24 h with the mobile phase at different pH values (pH = 3 and 8), the retention time of alkylbenzenes were almost same for Sil-Im-C18-1 at different time, the RSD values of retention time of alkylbenzenes were 0.45 %-2.28 % for two batches Sil-Im-C18-1, revealing the excellent repeatability, thermal stability, durability and reproducibility of Sil-Im-C18, and implying a commercial prospect.


Subject(s)
Chromatography, Reverse-Phase , Imidazoles , Polycyclic Aromatic Hydrocarbons , Silicon Dioxide , Imidazoles/chemistry , Silicon Dioxide/chemistry , Chromatography, Reverse-Phase/methods , Polycyclic Aromatic Hydrocarbons/analysis , Polycyclic Aromatic Hydrocarbons/isolation & purification , Polycyclic Aromatic Hydrocarbons/chemistry , Silanes/chemistry , Chromatography, Ion Exchange/methods
9.
Front Immunol ; 15: 1379853, 2024.
Article in English | MEDLINE | ID: mdl-38650937

ABSTRACT

Introduction: Macrophages are an important component of innate immunity and involved in the immune regulation of multiple diseases. The functional diversity and plasticity make macrophages to exhibit different polarization phenotypes after different stimuli. During tumor progression, the M2-like polarized tumor-associated macrophages (TAMs) promote tumor progression by assisting immune escape, facilitating tumor cell metastasis, and switching tumor angiogenesis. Our previous studies demonstrated that functional remodeling of TAMs through engineered-modifying or gene-editing provides the potential immunotherapy for tumor. However, lack of proliferation capacity and maintained immune memory of infused macrophages restricts the application of macrophage-based therapeutic strategies in the repressive tumor immune microenvironment (TIME). Although J2 retrovirus infection enabled immortalization of bone marrow-derived macrophages (iBMDMs) and facilitated the mechanisms exploration and application, little is known about the phenotypic and functional differences among multi kinds of macrophages. Methods: HE staining was used to detect the biosafety of iBMDMs, and real-time quantitative PCR, immunofluorescence staining, and ELISA were used to detect the polarization response and expression of chemokines in iBMDMs. Flow cytometry, scratch assay, real-time quantitative PCR, and crystal violet staining were used to analyze its phagocytic function, as well as its impact on tumor cell migration, proliferation, and apoptosis. Not only that, the inhibitory effect of iBMDMs on tumor growth was detected through subcutaneous tumor loading, while the tumor tissue was paraffin sectioned and flow cytometry was used to detect its impact on the tumor microenvironment. Results: In this study, we demonstrated iBMDMs exhibited the features of rapid proliferation and long-term survival. We also compared iBMDMs with RAW264.7 cell line and mouse primary BMDMs with in vitro and in vivo experiments, indicating that the iBMDMs could undergo the same polarization response as normal macrophages with no obvious cellular morphology changes after polarization. What's more, iBMDMs owned stronger phagocytosis and pro-apoptosis functions on tumor cells. In addition, M1-polarized iBMDMs could maintain the anti-tumor phenotypes and domesticated the recruited macrophages of receptor mice, which further improved the TIME and repressed tumor growth. Discussion: iBMDMs can serve as a good object for the function and mechanism study of macrophages and the optional source of macrophage immunotherapy.

10.
J Exp Child Psychol ; 243: 105928, 2024 Apr 20.
Article in English | MEDLINE | ID: mdl-38643735

ABSTRACT

Previous studies have shown that adults exhibit the strongest attentional bias toward neutral infant faces when viewing faces with different expressions at different attentional processing stages due to different stimulus presentation times. However, it is not clear how the characteristics of the temporal processing associated with the strongest effect change over time. Thus, we combined a free-viewing task with eye-tracking technology to measure adults' attentional bias toward infant and adult faces with happy, neutral, and sad expressions of the same face. The results of the analysis of the total time course indicated that the strongest effect occurred during the strategic processing stage. However, the results of the analysis of the split time course revealed that sad infant faces first elicited adults' attentional bias at 0 to 500 ms, whereas the strongest effect of attentional bias toward neutral infant faces was observed at 1000 to 3000 ms, peaking at 1500 to 2000 ms. In addition, women and men had no differences in their responses to different expressions. In summary, this study provides further evidence that adults' attentional bias toward infant faces across stages of attention processing is modulated by expressions. Specifically, during automatic processing adults' attentional bias was directed toward sad infant faces, followed by a shift to the processing of neutral infant faces during strategic processing, which ultimately resulted in the strongest effect. These findings highlight that this strongest effect is dynamic and associated with a specific time window in the strategic process.

11.
Environ Sci Technol ; 58(16): 7020-7031, 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38608167

ABSTRACT

Adjusting the electronic state of noble metal catalysts on a nanoscale is crucial for optimizing the performance of nanocatalysts in many important environmental catalytic reactions, particularly in volatile organic compound (VOC) combustion. This study reports a novel strategy for optimizing Pt catalysts by modifying their electronic structure to enhance the electron density of Pt. The research illustrates the optimal 0.2Pt-0.3W/Fe2O3 heterostructure with atomic-thick WO3 layers as a bulking block to electronically modify supported Pt nanoparticles. Methods such as electron microscopy, X-ray photoelectron spectroscopy, and in situ Fourier transform infrared spectroscopy confirm Pt's electron-enriched state resulting from electron transfer from atomic-thick WO3. Testing for benzene oxidation revealed enhanced low-temperature activity with moderate tungsten incorporation. Kinetic and mechanistic analyses provide insights into how the enriched electron density benefits the activation of oxygen and the adsorption of benzene on Pt sites, thereby facilitating the oxidation reaction. This pioneering work on modifying the electronic structure of supported Pt nanocatalysts establishes an innovative catalyst design approach. The electronic structure-performance-dependent relationships presented in this study assist in the rational design of efficient VOC abatement catalysts, contributing to clean energy and environmental solutions.

12.
Huan Jing Ke Xue ; 45(5): 2848-2858, 2024 May 08.
Article in Chinese | MEDLINE | ID: mdl-38629547

ABSTRACT

The application of biomarkers to study the molecular composition of soil organic matter (SOM) can be used to analyze the source and degradation of SOM and reveal the stability mechanism of soil organic carbon (SOC) at the molecular level. In order to further clarify the effects of different land use patterns (farmland, grassland, and forest) on the molecular composition of SOM, the changes in molecular composition of organic matter (free lipids, cutin, suberin, and lignin) on a global scale were studied using a meta-analysis method. The results showed that there were significant differences in the molecular composition of organic matter under different land use patterns. The contents of free lipids (n-alkanes, n-alkanols, n-alkanoic acids, and cyclic lipids), cutin, and lignin phenols in forest soil were significantly higher than those in grassland and farmland. There was no significant difference in the content of suberin between grassland and forest soil. The ratio of suberin to cutin in grassland was the highest, with an average of 2.96, and the averages of farmland and forest were 1.68 and 2.21, respectively. The ratio of syringic acid to syringaldehyde (Ad/Al)S and the ratio of vanillic acid to vanillin (Ad/Al)V of farmland soil were the largest, which were 1.25 and 1.58, respectively, and were significantly higher than those in grassland (0.46 and 0.69) and forest (0.78 and 0.7). The results of correlation analysis showed that in farmland soil, suberin was significantly correlated with mean annual precipitation (MAP) and clay; cutin was significantly correlated with clay; and lignin was significantly correlated with mean annual temperature (MAT), MAP, sand, and bulk density. In grassland soil, total free lipids were significantly correlated with MAP and bulk density; suberin and cutin were significantly correlated with MAT and MAP; and lignin was significantly correlated with MAP, pH, sand, and bulk density. However, only lignin was significantly correlated with MAP and sand in forest soils. Overall, the contents of SOC and molecular components in forest soil were higher under the three land use practices, and the contribution of plant roots to SOM in grassland soil was greater. In farmland soil, the degradation of lignin was accelerated due to human farming activities. Future research should focus on the regulation of soil physicochemical properties and climatic conditions on the molecular composition of SOM.

13.
Environ Res ; 252(Pt 2): 118904, 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38614203

ABSTRACT

CH4 serves as an important greenhouse gas, yet limited knowledge is available in global and regional CH4 cycling, particularly in widely distributed karst terrain. In this study, we investigated an upland in Puding Karst Ecosystem Research Station, and explored CH4 concentration and/or flux in atmosphere, soil and cave using a closed static chamber method and an eddy covariance system. Meanwhile, we monitored atmospheric temperature, precipitation, temperature and wind velocity in the cave entrance. The results demonstrated that atmospheric CH4 and actual soil CH4 fluxes in the source area of eddy covariance system were -0.19 ± 8.64 nmols-1m-2 and -0.16 nmols-1m-2 respectively. The CH4 concentrations in Shawan Cave exhibited 10 âˆ¼ 100-fold lower than that of the external atmosphere. CH4 oxidation rate dominated by methane-oxidizing bacteria was 1.98 nmols-1m-2 in Shawan Cave when it combined with temperature difference between cave and external atmosphere. Therefore, CH4 sink in global karst subterranean spaces was estimated at 106.2 Tg CH4 yr-1. We supplemented an understanding of CH4 cycling paths and fluxes in karst terrain, as well as CH4 sinks in karst subterranean space. Further works require to establish a karst ecosystem observation network to conduct long-term integrated studies on CH4 fluxes regarding atmosphere, soils, plants and caves.

14.
ACS Omega ; 9(12): 14520-14529, 2024 Mar 26.
Article in English | MEDLINE | ID: mdl-38559968

ABSTRACT

Gastrodia elata Blume (G. elata) is a well-known medicine food homology plant widely used in treating neurological disorders such as Alzheimer's disease (AD). Here, undiscovered gastrodin derivatives were systematically studied. Seven novel gastrodin derivatives (1-7), including a unique gastrodin isocitrate (1) and six differently substituted parishin derivatives (2-7), were isolated. Structural identification was mainly based on 1D and 2D NMR data, high-resolution ESI-MS data, and HPLC analysis. Notably, the stereochemistry of 1 was further elucidated by ECD calculations. Compounds 1 and 6 showed neuroprotective effects on the H2O2-induced PC12 cell injury model. Molecular docking analysis exhibited that 1 and 6 had good affinities with three popular AD-related targets. These findings not only enriched the chemical diversity but also revealed potential active components in G. elata.

15.
Top Stroke Rehabil ; : 1-16, 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38566465

ABSTRACT

OBJECTIVES: The purpose of this study was to provide a comprehensive overview of the prevalence, measurement tools, influencing factors, and interventions for fear of falling (FOF) in stroke survivors. METHODS: A PRISMA-guided systematic literature review was conducted. PubMed, EMBASE, Cochrane, and Web of Science were systematically searched. The search time was up to February 2023. All observational and experimental studies investigating FOF in stroke patients were included. The assessment tool of the Joanna Briggs Institute was used to assess the quality of the included studies and the risk of bias assessment. (PROSPERO: CRD42023412522). RESULT: A total of 25 observational studies and 10 experimental studies were included. The overall quality of the included studies was "low" to "good." The most common tool used to measure the FOF was the Falls Efficacy Scale-International (FES-I). The prevalence of FOF was 42%- 93.8%. Stroke survivors with physical impairments have the highest prevalence of FOF. The main risk factors for the development of FOF in stroke survivors were female gender, use of assistive devices, balance, limb dysfunction, and functional mobility. The combination of cognitive behavioral and exercise interventions is the most effective strategy. CONCLUSIONS: This review suggests that the prevalence of FOF in stroke survivors is high and that understanding the factors associated with FOF in stroke patients can help develop multifactorial prevention strategies to reduce FOF and improve quality of life. In addition, a uniform FOF measurement tool should be used to better assess the effectiveness of interventions for stroke survivors. ETHICS APPROVAL: PROSPERO registration (CRD42023412522).

16.
World J Clin Cases ; 12(9): 1704-1711, 2024 Mar 26.
Article in English | MEDLINE | ID: mdl-38576733

ABSTRACT

BACKGROUND: Venous thromboembolism significantly contributes to patient deterioration and mortality. Management of its etiology and anticoagulation treatment is intricate, necessitating a comprehensive consideration of various factors, including the bleeding risk, dosage, specific anticoagulant medications, and duration of therapy. Herein, a case of lower extremity thrombosis with multiple primary malignant tumors and high risk of bleeding was reviewed to summarize the shortcomings of treatment and prudent anticoagulation experience. CASE SUMMARY: An 83-year-old female patient was admitted to the hospital due to a 2-wk history of left lower extremity edema that had worsened over 2 d. Considering her medical history and relevant post-admission investigations, it was determined that the development of left lower extremity venous thrombosis and pulmonary embolism in this case could be attributed to a combination of factors, including multiple primary malignant tumors, iliac venous compression syndrome, previous novel coronavirus infection, and inadequate treatment for prior thrombotic events. However, the selection of appropriate anticoagulant medications, determination of optimal drug dosages, and establishment of an appropriate duration of anticoagulation therapy were important because of concurrent thrombocytopenia, decreased quantitative fibrinogen levels, and renal insufficiency. CONCLUSION: Anticoagulant prophylaxis should be promptly initiated in cases of high-risk thrombosis. Individualized anticoagulation therapy is required for complex thrombosis.

17.
World J Clin Cases ; 12(9): 1691-1697, 2024 Mar 26.
Article in English | MEDLINE | ID: mdl-38576740

ABSTRACT

BACKGROUND: Insulin autoimmune syndrome (IAS) is a severe manifestation of spontaneous hypoglycemia. It is characterized by elevated levels of immune-reactive insulin and highly potent insulin autoantibodies (IAAs), which are induced by endogenous insulin circulating in the bloodstream. It is distinguished by recurring instances of spontaneous hypoglycemia, the presence of IAA within the body, a substantial elevation in serum insulin levels, and an absence of prior exogenous insulin administration. Nevertheless, recent studies show that both conventional insulin and its analogs can induce IAS episodes, giving rise to the notion of non-classical IAS. Therefore, more attention should be paid to these diseases. CASE SUMMARY: In this case report, we present a rare case of non-classical IAS in an 83-year-old male patient who present with symptoms of a psychiatric disorder. Upon symptom onset, the patient exhibited Whipple's triad (including hypoglycemia, blood glucose level less than 2.8 mmol/L during onset, and rapid relief of hypoglycemic symptoms after glucose administration). Concurrently, his serum insulin level was significantly elevated, which contradicted his C-peptide levels. After a comprehensive examination, the patient was diagnosed with exogenous insulin autoimmune syndrome. Considering that the patient had type 2 diabetes mellitus and a history of exogenous insulin use before disease onset, it was presumed that non classical IAS was induced by this condition. The PubMed database was used to search for previous cases of IAS and non-classical IAS to analyze their characteristics and treatment approaches. CONCLUSION: The occurrence of non-classical IAS is associated with exogenous insulin or its analogs, as well as with sulfhydryl drugs. Symptoms can be effectively alleviated through the discontinuation of relevant medications, administration of hormones or immunosuppressants, plasma exchange, and lifestyle adjustments.

18.
Org Biomol Chem ; 22(16): 3204-3208, 2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38563260

ABSTRACT

An efficient palladium-catalyzed [2 + 2 + 1] annulation of 3-iodochromones, bridged olefins, and iodomethane is described, affording a range of chromone-containing polycyclic compounds. Additionally, the corresponding deuterated products were smoothly obtained with iodomethane-d3 instead of iodomethane. Moreover, the synthetic utility of this method is further substantiated by gram scale preparation and application to late-stage modification of estrone.

19.
Anal Chem ; 2024 Apr 22.
Article in English | MEDLINE | ID: mdl-38648202

ABSTRACT

Accurate detection of endogenous miRNA modifications, such as N6-methyladenosine (m6A), 7-methylguanosine (m7G), and 5-methylcytidine (m5C), poses significant challenges, resulting in considerable uncertainty regarding their presence in mature miRNAs. In this study, we demonstrate for the first time that liquid chromatography coupled with a tandem mass spectrometry (LC-MS/MS) nucleoside analysis method is a practical tool for quantitatively analyzing human miRNA modifications. The newly designed liquid-solid two-step hybridization (LSTH) strategy enhances specificity for miRNA purification, while LC-MS/MS offers robust capability in recognizing modifications and sufficient sensitivity with detection limits ranging from attomoles to low femtomoles. Therefore, it provides a more reliable approach compared to existing techniques for revealing modifications in endogenous miRNAs. With this approach, we characterized m6A, m7G, and m5C modifications in miR-21-5p, Let-7a/e-5p, and miR-10a-5p isolated from cultured cells and observed unexpectedly low abundance (<1% at each site) of these modifications.

SELECTION OF CITATIONS
SEARCH DETAIL
...